	Questi	ion	er	Mark	Guidance
1	(a)	(i)	proton donor ✓	1	ALLOW H ⁺ donor
		(ii)	(the proportion of) dissociation ✓		ALLOW a weak acid partly dissociates ALLOW a strong acid totally dissociates ALLOW ionisation for dissociation ALLOW the ability to donate a proton
			Correct equation for any of the four acids: $C_6H_5COOH = H^+ + C_6H_5COO^-$ OR $CH_3COOH = H^+ + CH_3COO^-$ OR $CH_3COCOOH = H^+ + CH_3COCOO^-$ OR $CH_3CHOHCOOH = H^+ + CH_3CHOHCOO^-$	2	Equilibrium sign required ALLOW equilibria involving H_2O and H_3O^+ e.g. $C_6H_5COOH + H_2O = H_3O^+ + C_6H_5COO^-$, etc DO NOT ALLOW $HA = H^+ + A^-$
		(iii)	weakest: CH₃COOH acetic acid CH₅COOH benzoic acid CH₃CHOHCOOH lactic acid strongest: CH₃COCOOH ✓ pyruvic acid	1	ALLOW correct order using any identifier from the table, <i>ie</i> , common name, systematic name, structural formula OR p K_a value
		(iv)	C ₆ H ₅ COOH ₂ ⁺ + CH ₃ CHOHCOO ⁻ ✓	1	BOTH products AND correct charges required for mark Mark ECF from incorrect order in (iii) See response from (iii) below response to (iv)

Question	er	Mark	Guidance
(b) (i)	2CH ₃ COCOOH + Ca(OH) ₂ → (CH ₃ COCOO) ₂ Ca + 2H ₂ O√ Note: pyruvic acid must have been used here and formula of pyruvic acid and pyruvate must be correct	1	All species AND balancing required for the mark ALLOW (CH ₃ COCOO ⁻) ₂ Ca ²⁺ ALLOW equation showing 2CH ₃ COCOO ⁻ + Ca ²⁺ IF charges shown, charges must balance, e.g. DO NOT ALLOW (CH ₃ COCOO ⁻) ₂ Ca IGNORE state symbols if shown ALLOW multiples ALLOW equilibrium sign
(ii)	$H^+ + OH^- \longrightarrow H_2O$	1	ALLOW multiples but not same species on both sides ALLOW equilibrium sign IGNORE state symbols if shown ALLOW H ₃ O ⁺ + OH ⁻ → 2H ₂ O ALLOW CH ₃ COCOOH + OH ⁻ → CH ₃ COCOO ⁻ + H ₂ O
(c)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.11, award 4 marks	4	IF there is an alternative answer, check to see if there is any ECF credit possible using working below IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0041 to calculator value: 0.004073802 IF the pK _a of a different weak acid has been used use ECF from 2nd marking point ALLOW 0.0078 to calculator value (depending on previous rounding) ALLOW ONLY 2.11 (This is to take into account poor previous rounding) IF candidate has used 0.0150 mol dm ⁻³ (<i>ie</i> assumes strong acid) ALLOW final mark ONLY by ECF for a pH of 1.82 IF no square root used, pH = 4.21 3 marks

Questi	ion	er	Mark	Guidance
(d)	(i)	о н—о о—н <i>х</i>	1	ALLOW correct structural OR displayed OR skeletal formula OR recognisable mixture of formulae DO NOT ALLOW molecular formula but ALLOW (COOH) ₂ OR (CO ₂ H) ₂ OH BUT not O-H-C
	(ii)	$C_2H_2O_4 \rightleftharpoons H^+ + C_2HO_4^- \checkmark$ $C_2HO_4^- \rightleftharpoons H^+ + C_2O_4^{2-} \checkmark$	2	ALLOW in either order ALLOW arrow instead of equilibrium sign ALLOW molecular formulae for this part ALLOW equilibria involving H ₂ O and H ₃ O ⁺ ALLOW equations using structures

Question	er	Mark	Guidance
(e)	Chemicals (1 mark) lactic acid / CH₃CHOHCOOH AND (sodium) lactate / CH₃CHOHCOO⁻ (Na⁺) ✓		ANNOTATE WITH TICKS AND CROSSES, etc ALLOW any lactate salt ALLOW lactic acid AND NaOH OR lactic acid AND OH
	Concentrations (4 marks)		FOR ALTERNATIVE using Henderson–Hasselbalch equation, SEE PAGE 11
	EITHER $[H^{+}(aq)] = 10^{-3.55} \text{ OR } 2.8 \times 10^{-4}$ OR 2.82 x 10^{-4} (mol dm ⁻³) \(\sigma \) separate marking point		If another weak acid has been selected and salt has been selected, allow ECF for remainder of question SEE PAGE 12
		6	ALLOW 2.8 x 10 ⁻⁴ up to calculator value of 2.81838 x 10 ⁻⁴ ALLOW 0.00028, etc
	$K_a = 10^{-3.86}$ OR 1.4 x 10 ⁻⁴ OR 1.38 x 10 ⁻⁴ (mol dm ⁻³)		ALLOW 1.4 x 10 ⁻⁴ up to calculator value of 1.38038 x 10 ⁻⁴ ALLOW 0.00014, etc
	separate marking point $\frac{[HA]}{[A^-]} = \frac{[H^+]}{K_a} OR \frac{[A^-]}{[HA]} = \frac{K_a}{[H^+]} \checkmark$		ALLOW use of CH ₃ CHOHCOOH AND CH ₃ CHOHCOO ⁻ (Na ⁺) ALLOW use of acid AND salt ALLOW value from $\frac{\text{calculated value of [H}^{+}]}{\text{calculated value of } \mathcal{K}_{a}}$
	$\frac{[HA]}{[A^{-}]} = \frac{2.8 \times 10^{-4}}{1.4 \times 10^{-4}} \text{ OR } \frac{2}{1} \text{ OR } 2 \text{ OR } \frac{[A^{-}]}{[HA]} = \frac{0.5}{1} \text{ OR}$ $0.5\checkmark$		ALLOW 2SF up to calculator value of 2.041742129 correctly rounded but ALLOW 2 if 2.8 x 10 ⁻⁴ and 1.4 x 10 ⁻⁴ used ALLOW 2 mol dm ⁻³ HA AND 1 mol dm ⁻³ A ⁻ OR any concentration ratio of 2(acid) : 1(salt)
	This marking point subsumes previous marking point ONLY		ALLOW 2SF up to calculator value of 0.489778819 correctly rounded but ALLOW 0.5 if 2.8 x 10 ⁻⁴ and 1.4 x 10 ⁻⁴ used
	Comment (1 mark) Magic tang/taste could come from other chemicals/substances in the sweet OR The buffer would have the same taste/tang as the magic tang ✓		Todalidad Sat Manager Claim 2.0 x 10 and 1.1 x 10 addu

Question	er	Mark	Guidance
Question	ALTERNATIVE approach for concentrations using Henderson–Hasselbalch equation (4 marks) $pH = pK_a + log \frac{[A^-]}{[HA]} OR -logK_a + log \frac{[A^-]}{[HA]} \checkmark$ $log \frac{[A^-]}{[HA]} = 3.55 - 3.86 \checkmark \text{ (subsumes previous mark)}$ $log \frac{[A^-]}{[HA]} = -0.31 \checkmark \text{ (subsumes previous mark)}$	Mark	Guidance ALLOW use of CH ₃ CHOHCOOH AND CH ₃ CHOHCOO ⁻ (Na ⁺) ALLOW use of acid AND salt ALLOW pH = $pK_a - log \frac{[HA]}{[A^-]}$ OR $-log K_a - log \frac{[HA]}{[A^-]}$ ALLOW $log \frac{[HA]}{[A^-]} = 3.86 - 3.55$ (subsumes previous mark) ALLOW $log \frac{[HA]}{[A^-]} = 0.31$ (subsumes previous mark)
	$\frac{[A^{-}]}{[HA]} = 10^{-0.31} = \frac{0.490}{1} \text{ OR } 0.490 \checkmark$		ALLOW $\frac{[HA]}{[A^-]} = 10^{0.31} = \frac{2.04}{1}$ OR $\frac{2}{1}$ OR 2 For $\frac{[A^-]}{[HA]}$, ALLOW 2 SF up to calculator value of 0.48978819 For $\frac{[HA]}{[A^-]}$, ALLOW 2 SF up to calculator value of 2.041737945 but ALLOW 2 if $10^{-0.31}$ used

	lactic yruvic		acetic	benzoic			
p <i>K</i> _a	3.86			4.19			
MP1	lactic AND lactate OR lactic acid AND OH	No mark	No mark	No mark			
MP2: [H ⁺]		10 ^{-3.55} OR 2.82 x 10	0^{-4} (calc : 2.81838 x 10^{-4})				
MP3: <i>K</i> _a	10 ^{-3.86} OR 1.38 x 10 ⁻⁴	10 ^{-2.39} OR 4.07 x 10 ⁻³	10 ^{-4.76} OR 1.74 x 10 ⁻⁵	10 ^{-4.19} OR 6.46 x 10 ⁻⁵			
calc:	1.380384265 x 10 ⁻⁴	4.073802778 x 10 ⁻³	1.737800829 x 10 ⁻⁵	6.45654229 x 10 ⁻⁵			
MP4: ratio expression	$\frac{[HA]}{[A^-]} = \frac{[H^+]}{K_a} \qquad OR \qquad \frac{[A^-]}{[HA]} = \frac{K_a}{[H^+]}$						
MP5: [HA] [A ⁻]	$\frac{2.82\times10^{-4}}{1.38\times10^{-4}} \text{ OR } 2.04$	$\frac{2.82\times10^{-4}}{4.07\times10^{-3}} \text{ OR } 0.0693$	$\frac{2.82\times10^{-4}}{1.74\times10^{-5}} \text{ OR } 16.2$	$\frac{2.82 \times 10^{-4}}{6.46 \times 10^{-5}} \text{ OR } 4.37$			
calc:	2.041737945	calc: 0.069183097	calc: 16.21810097	calc: 4.365158322			
OR [A ⁻] [HA]	$\frac{1.38 \times 10^{-4}}{2.82 \times 10^{-4}} \text{ OR } 0.489$	$\frac{4.07 \times 10^{-3}}{2.82 \times 10^{-4}} \text{ OR } 14.4$	$\frac{1.74 \times 10^{-5}}{2.82 \times 10^{-4}} \text{ OR } 0.0617$	$\frac{6.46\times10^{-5}}{2.82\times10^{-4}} \text{ OR } 0.229$			
calc:	0.489778819		0.0616595	0.229086765			
TAKE CARE: Calc values are completely unrounded and may differ between brands of calculator Use actual candidate values at each stage using rounding to 2 or more SF. MP5: calculated using 3 SF from MP2 and MP3 calc values for MP5 are completely unrounded (using calculator values from MP2 and MP3) Be slightly flexible as candidates may have written down rounded values but carried on with calculator values							

Qu	esti	on	Expected Answers	Marks	Additional Guidance
2	а		measured pH > 1 OR [H ⁺] < 0.1 (mol dm ⁻³) \checkmark	4	ALLOW C ₂ H ₅ throughout question ALLOW [H ⁺] < [CH ₃ CH ₂ COOH] OR [H ⁺] < [HA] ALLOW measured pH is higher than expected ALLOW measured pH is not as acidic as expected ALLOW a quoted pH value or range > 1 and < 7 OR between 1 and 7
			$[H^+] = 10^{-pH} \checkmark$		ALLOW [H ⁺] = antilog –pH OR [H ⁺] = inverse log –pH
			$K_{a} = \frac{[H^{+}][CH_{3}CH_{2}COO^{-}]}{[CH_{3}CH_{2}COOH]}$ OR $\frac{[H^{+}]^{2}}{[CH_{3}CH_{2}COOH]}$		ALLOW [H ⁺][A ⁻] OR [H ⁺] ² [HA] [HA]
			Calculate K_a from $\frac{[H^+]^2}{0.100} \checkmark$		IF K_a is NOT given and $K_a = \frac{[H^+]^2}{0.100}$ is shown, award mark for K_a also (i.e. $K_a = \frac{[H^+]^2}{0.100}$ is automatically awarded the last 2 marks)
	b		Marks are for correctly calculated values. Working shows how values have been derived.	2	ALLOW 3.467368505 × 10 ⁻¹⁴ and correct rounding to 3.5 × 10 ⁻¹⁴
			$[H^+] = 10^{-13.46} = 3.47 \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$ $[OH^-] = \frac{1.0 \times 10^{-14}}{3.47 \times 10^{-14}} = 0.29 \text{ (mol dm}^{-3}) \checkmark$		ALLOW 0.28840315 and correct rounding to 0.29, i.e. ALLOW 0.288 ALLOW alternative approach using pOH:
					pOH = $14 - 13.46 = 0.54 \checkmark$ [OH ⁻] = $10^{-0.54} = 0.29$ (mol dm ⁻³) \checkmark
					Correct answer gets BOTH marks

Question	Expected Answers	Marks	Additional Guidance
c	Propanoic acid reacts with sodium hydroxide forming propanoate ions/sodium propanoate OR CH ₃ CH ₂ COOH + NaOH → CH ₃ CH ₂ COONa + H ₂ O ✓ Some propanoic acid remains OR propanoic acid AND propanoate (ions) / sodium propanoate present ✓ equilibrium: CH ₃ CH ₂ COOH ⇒ H ⁺ + CH ₃ CH ₂ COO ⁻ ✓	7 7	Additional Guidance ANNOTATIONS MUST BE USED ALLOW C ₂ H ₅ throughout question ALLOW Adding NaOH forms propanoate ions/sodium propanoate (imples that the NaOH is added to the propanoic acid) ALLOW: weak acid AND its conjugate base/salt present Throughout, do not penalise comments that imply that pH is constant in presence of buffer DO NOT ALLOW HA and A ⁻ in this equilibrium expression For description of action of buffer below, ALLOW HA for CH ₃ CH ₂ COOH; ALLOW A ⁻ for CH ₃ CH ₂ COO ⁻
	Added alkali CH ₃ CH ₂ COOH reacts with added alkali OR CH ₃ CH ₂ COOH + OH ⁻ → OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ → ✓ → CH ₃ CH ₂ COO ⁻ OR Equilibrium → right ✓ Added acid CH ₃ CH ₂ COO ⁻ reacts with added acid OR [H ⁺] increases ✓ → CH ₃ CH ₂ COOH OR Equilibrium → left ✓		Equilibrium responses must refer back to a written equilibrium. IF no equilibrium shown, use the equilibrium as written in expected answers (which is also written on page 6 of the paper) ALLOW weak acid reacts with added alkali ALLOW conjugate base reacts with added acid DO NOT ALLOW salt reacts with added acid
	vsics AndMaths Tutor com	5	

Question	Expected Answers	Marks	Additional Guidance
d	$HNO_3 + CH_3CH_2COOH \Rightarrow CH_3CH_2COOH_2^+ + NO_3^- \checkmark$ acid 1 base 2 acid 2 base 1 \checkmark	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid–base pairs are. IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid–base pairs, i.e. HNO ₃ + CH ₃ CH ₂ COOH ⇒ CH ₃ CH ₂ COO ⁻ + H ₂ NO ₃ ⁺ × base 2 acid 1 base 1 acid 2 ✓
e i	2CH ₃ CH ₂ COOH + Mg → (CH ₃ CH ₂ COO) ₂ Mg + H ₂ ✓	1	IGNORE state symbols ALLOW ionic equation: 2H ⁺ + Mg → Mg ²⁺ + H ₂ IGNORE any random charges in formula of (CH ₃ CH ₂ COO) ₂ Mg as long as the charges are correct (charges are treated as working) i.e. (CH ₃ COO ⁻) ₂ Mg OR (CH ₃ COO) ₂ ⁻ Mg should not be penalised However, Mg ²⁺ instead of Mg on the left side of equation is obviously wrong
ii	$2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}O + CO_{2}$ $\mathbf{OR} \ 2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}CO_{3}$ $\mathbf{OR} \ H^{+} + CO_{3}^{2-} \longrightarrow HCO_{3}^{-} \checkmark$	1	State symbols NOT required
	Total	17	

Qu	est	ion	Expected answers	Marks	Additional guidance
3	а		A strong acid completely dissociates AND a weak acid partially dissociates ✓	1	ALLOW ionises for dissociates
		ii	$(K_{a} =) \frac{[H^{+}][NO_{2}^{-}]}{[HNO_{2}]} \checkmark$	1	DO NOT ALLOW $\frac{[H^+]^2}{[HNO_2]}$ Square brackets are required
		iii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.89 award 2 marks IF answer = 1.9 award 1 mark		IF there is an alternative answer to more decimal places, check calculator value
			pH = −log 0.0129 = 1.89 ✓✓		Working to get to 0.0129 (mol dm ⁻³) Not required and no credit $[H^+] = \sqrt{K_a \times [HNO_2]} = \sqrt{4.43 \times 10^{-4} \times 0.375}$
			OR pH = −log 0.0129 = 1.9 ✓ <i>not two decimal places</i>	2	ALLOW 1 mark for an answer with more than 2 decimal places that rounds back to 1.89
		iv	$HNO_3 + HNO_2 \Rightarrow NO_3^- + H_2NO_2^+ \checkmark$ Acid 1 Base 2 Base 1 Acid 2 \checkmark	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid–base pairs are IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid–base pairs, <i>i.e.</i> HNO ₃ + HNO ₂ = H ₂ NO ₃ ⁺ + NO ₂ ⁻ × Base 2 Acid 1 Acid 2 Base 1 ✓
					NOTE For the 2nd marking point (acid–base pairs), this is the ONLY acceptable ECF

Qu	est	ion	Expected answers	Marks	Additional guidance
					i.e., NO ECF from impossible chemistry
	b		Proton acceptor ✓	1	ALLOW H ⁺ acceptor
		ii	Marks are for correctly calculated values. Working shows how values have been derived. $[OH^-] = 2 \times 0.04(00) = 0.08(00) \text{ (mol dm}^{-3}) \checkmark$ $[H^+] = \frac{1.00 \times 10^{-14}}{0.08(00)} \text{ OR } 1.25 \times 10^{-13} \text{ (mol dm}^{-3}) \checkmark$ $pH = -log 1.25 \times 10^{-13} = 12.90 \checkmark$ $pOH variation (also worth 3 marks)$ $[OH^-] = 2 \times 0.04(00) = 0.08(00) \text{ (mol dm}^{-3}) \checkmark$ $pOH -log 0.08(00) = 1.10 \checkmark$ $pH = 14.00 - 1.10 = 12.90 \checkmark$	3	ALLOW by ECF $\frac{1.00 \times 10^{-14}}{\text{calculated value of } [\text{OH}^-]}$ DO NOT ALLOW 12.9 not two decimal places
	С		$Ca(OH)_2 + 2HNO_2 \rightarrow Ca(NO_2)_2 + 2H_2O \checkmark$ $H^+ + OH^- \longrightarrow H_2O \checkmark$	2	ALLOW : $2H^+ + 2OH^- \rightarrow 2H_2O$

Question	Expected answers	Marks	Additional guidance
d	Equilibrium H ₂ CO ₃ = H ⁺ + HCO ₃ ⁻ ✓		ANNOTATIONS MUST BE USED Equilibrium sign is required IGNORE $HA \Rightarrow H^+ + A^-$ DO NOT ALLOW $H_2CO_3 \Rightarrow 2H^+ + CO_3^{2-}$ DO NOT ALLOW $NaHCO_3 \Rightarrow Na^+ + HCO_3^-$ IGNORE $H_2O + CO_2 \Rightarrow H_2CO_3$
	Added alkali H ₂ CO ₃ reacts with added alkali OR H ₂ CO ₃ + OH ⁻ → OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ → ✓ Equilibrium → right OR equilibrium shifts forming H ⁺ OR HCO ₃ ⁻ ✓		IF HA = H ⁺ + A ⁻ OR H ₂ CO ₃ = 2H ⁺ + CO ₃ ²⁻ have been used above: ALLOW all marks that meet marking alternatives as written NOTE The 1st 'added acid' mark cannot then be accessed Equilibrium responses must refer back to a written equilibrium BUT IF H ₂ CO ₃ → H ⁺ + HCO ₃ ⁻ shown above, assume that any equilibrium comments apply to the correct equilibrium IF more than one equilibrium shown, it must be clear which equilibrium is being referred to ALLOW added alkali reacts with weak acid Quality of Written Communication Mark is for linking the action of the buffer in controlling added alkali and hence pH

Qu	Question		Expected answers	Marks	Additional guidance
			Added acid HCO₃⁻ reacts with added acid ✓ Equilibrium → left OR equilibrium shifts forming H₂CO₃ ✓	5	HCO ₃ ⁻ is required for this mark BUT ALLOW added acid reacts with conjugate base ONLY if HCO ₃ ⁻ is present in equilibrium with H ₂ CO ₃ DO NOT ALLOW salt reacts with added acid
	d	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $6.6:1$ OR $1:0.15$ CHECK ratio is $HCO_3^-:H_2CO_3$ and award 5 marks. IF answer = $0.15:1$, CHECK ratio is $H_2CO_3:HCO_3^-$ and award 4 marks	5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			In blood at pH 7.40, $[H^+] = 10^{-pH} = 10^{-7.40} = 3.98 \times 10^{-8} \text{ (mol dm}^{-3}) \checkmark$ $K_a = \frac{[H^+] [HCO_3^-]}{[H_2CO_3]} = \frac{3.98 \times 10^{-8} \times 10.5}{1}$ OR $K_a = 4.18 \times 10^{-7} \text{ (mol dm}^{-3}) \checkmark$		ALLOW 3.98×10^{-8} up to calculator value of $3.981071706 \times 10^{-8}$ correctly rounded
			In blood at pH 7.20, $[H^+] = 10^{-pH} = 10^{-7.20} = 6.31 \times 10^{-8} \text{ (mol dm}^{-3}) \checkmark$		ALLOW 6.31×10^{-8} up to calculator value of $6.309573445 \times 10^{-8}$ correctly rounded
			$\frac{[HCO_3^-]}{[H_2CO_3]} = \frac{K_a}{[H^+]} \text{ OR } \frac{4.18 \times 10^{-7}}{6.31 \times 10^{-8}} \checkmark$ $= \frac{6.6}{4} \text{ OR } 6.6 : 1 \checkmark \text{ (up to calc. value, see below)}$		Common errors $0.15:1 \checkmark \checkmark \checkmark \checkmark Inverse \ ratio \ of \ H_2CO_3: HCO_3^-$ $16.6:1 \ OR \ 0.06:1 \checkmark \checkmark \checkmark 10.5/1 \ swapped \ over \ in \ 2nd$
			ALLOW any answer with > 1 decimal place that rounds back to 6.62 OR 6.63		mark giving K_a value of 3.79 x 10 ⁻⁹ ALLOW answer with > 1 decimal place that rounds back to 16.64 OR 16.65
ALTERNATIVE approach for concentrations using Henderson–Hasselbalch equation (5 marks)					
			$pH = pK_a + log \frac{[HCO_3^-]}{[H_2CO_3]} OR -log K_a + log \frac{[HCO_3^-]}{[H_2CO_3]} \checkmark$		
			$pK_a = pH - log \frac{[HCO_3^-]}{[H_2CO_3]} = 7.40 - log \frac{10.5}{1} = 6.38 \checkmark (s)$	subsumes	previous mark) Calculator: 6.378810701

Qu	ıesti	ion	Expected answers	Marks	Additional guidance		
			At pH = 7.20, $\log \frac{[HCO_3^-]}{[H_2CO_3]} = pH - pK_a = 7.20 - 6.38 = 0.82 \checkmark$ (subsumes previous mark)				
			$\frac{[HCO_3^-]}{[H_2CO_3]} = 10^{0.82} \checkmark = \frac{6.6}{1} \text{ OR } 6.6:1 \checkmark$				
			Total	22			